Spanning Star Trees in Regular Graphs

نویسنده

  • Jerrold W. Grossman
چکیده

For a subset W of vertices of an undirected graph G, let S(W ) be the subgraph consisting of W , all edges incident to at least one vertex in W , and all vertices adjacent to at least one vertex in W . If S(W ) is a tree containing all the vertices of G, then we call it a spanning star tree of G. In this case W forms a weakly connected but strongly acyclic dominating set for G. We prove that for every r ≥ 3, there exist r-regular n-vertex graphs that have spanning star trees, and there exist r-regular n-vertex graphs that do not have spanning star trees, for all n sufficiently large (in terms of r). Furthermore, the problem of determining whether a given regular graph has a spanning star tree is NP-complete. AMS Subject Classification (1991): Primary: 05C35 Secondary: 05C05, 05C85

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting the number of spanning trees of graphs

A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.

متن کامل

NUMBER OF SPANNING TREES FOR DIFFERENT PRODUCT GRAPHS

In this paper simple formulae are derived for calculating the number of spanning trees of different product graphs. The products considered in here consists of Cartesian, strong Cartesian, direct, Lexicographic and double graph. For this purpose, the Laplacian matrices of these product graphs are used. Form some of these products simple formulae are derived and whenever direct formulation was n...

متن کامل

Maximizing the number of spanning trees in Kn-complements of asteroidal graphs

In this paper we introduce the class of graphs whose complements are asteroidal (star-like) graphs and derive closed formulas for the number of spanning trees of its members. The proposed results extend previous results for the classes of the multi-star and multi-complete/star graphs. Additionally, we prove maximization theorems that enable us to characterize the graphs whose complements are as...

متن کامل

On the Number of Spanning Trees of Multi-Star Related Graphs

In this paper we compute the number of spanning trees of a specific family of graphs using techniques from linear algebra and matrix theory. More specifically, we consider the graphs that result from a complete graph K, after removing a set of edges that spans a multi-star graph K,,, (al, ~2, . , a,). We derive closed formulas for the number of spanning trees in the cases of double-star (m = 2)...

متن کامل

Completely Independent Spanning Trees in Some Regular Graphs

Let k ≥ 2 be an integer and T1, . . . , Tk be spanning trees of a graph G. If for any pair of vertices (u, v) of V (G), the paths from u to v in each Ti, 1 ≤ i ≤ k, do not contain common edges and common vertices, except the vertices u and v, then T1, . . . , Tk are completely independent spanning trees in G. For 2k-regular graphs which are 2k-connected, such as the Cartesian product of a compl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Graphs and Combinatorics

دوره 13  شماره 

صفحات  -

تاریخ انتشار 1997